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A measure of predictability that has many superior features compared to currently 
used measures is introduced. Through statistical theory it is demonstrated that in 
inviscid truncated flow this new predictability measure increases monotonically in 
time while all initial information about the system decays. Under the influence of 
forcing and viscosity the behaviour of this measure is shown always to satisfy intuitive 
expectations. 

I. Introduction 
In  this paper we develop the very natural synthesis between two recent develop- 

ments in statistical fluid mechanics. Firstly we recall theoretical work on the predict- 
ability of fluid motions, i.e. the question of how well future states of a fluid may be 
forecast given some perfect dynamical model but with an imperfect specification of 
initial conditions. Secondly, we consider the role of entropy or ‘information’ in 
describing macroscale fluid motions. Then we show that a suitable entropy may be 
defined which measures the ‘uncertainty’ regarding fluid states and which satisfies 
the property that entropy, defined for an ensemble of realizations, does not decrease 
in time except through external couplings. We discuss the roles of external couplings- 
both the dissipative coupling to the fields of microscale motion or radiation, and 
coupling to imposed forces. Such discussion is not limited to fully developed turbulence 
but rather may include wave propagation, as in the case of the role of planetary waves 
in weather predictaility. 

2. Statistical theory 
Predictability of fluid motion has been considered by Thompson (1957), Charney 

etaE. (1966), Lorenz (1963,1969), Smagorinsky (1969), Kraichnan (1970),Leith (1971), 
Lilly (1972) and Leith & Kraichnan (1972), among others. We imagine two realiza- 
tions of fluid motion which differ initially by a small, random ‘error’ field. Under some 
circumstances, that error grows in time until the two realizations become completely 
uncorrelated. This concept of predictability generalizes the idea of flow instability to 
circumstances where the ‘unperturbed’ flow may be a complicated function of space 
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and time. Predictability theory seeks to describe the evolution of the variance error 
field averaged over an ensemble of realizations of pairs of flows. 

Leith & Kraichnan (1972) present a theory of predictability for isotropic, homo- 
geneous, incompressible, turbulent flow based on Markovian closure theory (cf. 
Orszag 1970). This theory provides evolution equations for the variance spectra of the 
Fourier amplitudes of the two velocity fields, up)(k, t )  and utz'(k, t) ,  in the pair of flows 
t o  be compared. The ensemble for field @(k, t )  is assumed statistically identical to 
that for field ui2'(k, t ) ,  and the average field is assumed to vanish. The variance spectra 
for these fields are defined by (assuming reflection symmetry) 

Gi(k) Uk = V-l(uim)(k) u$")( - k)), (2.1a) 

e j (k )  1% V-*(u!.m)(k) u;.%)( - k)) (m f n),  (2.1 b )  

where e i ( k )  = Si j - Ic ik i / lcz ,  and V is the k-space volume element ( ~ T / L ) ~  for the 
discrete Fourier t,ransform in a d-dimensional box of side L. Markovian two-point 
closure theory (cf. Orszag 1970;Fournier & Frisch 1978;Rose & Sulem 1978;Carnevale, 
Frisch & Salmon 1981) predicts the rate of change of these spectra as 

x [l%K - uq] - 2vkui f Rk. (2.2 b )  

Fk and Rk represent the effects of external, stochastic, Gaussianly distributed forcing 
f!,")(t) which is white noise in time; they are defined by 

F$(k) 4 = V-l(fim)(k)fi")( - k)), (2.3a) 

qi(k)  Rk = V-l(f,'"'(k)fj'"'( - k)) (m +- n).  ( 2 . 3 b )  

vk represents a generalized 'dissipation ' function. Dissipative processes such as 
viscosity can be represented by vk > 0, while instability-type forcing processes can 
be represented with vk < 0. a represents the angle between wave vectors p and q. 
OkpQ is the triad relaxation time for the interaction of the modes k, p and q;  it is 
positive, symmetric under permutation of k, p and q (cf. Rose & Sulem 1978), and 
for present purposes otherwise arbitrary. 

The equations (2.2) are valid for arbitrary dimension d 2 2 (Fournier & Frisch 1978; 
Rose & Sulem 1978). Neglecting external forces they are the equations studied by 
Leith & Kraichnan (1972) for d = 2 or 3. Leith & Kraichnan (1972) also take the 
limit L + co, but for purposes of possible comparison with computer simulation we 
remain in the discrete notation and for convenience assume unit normalization, 
v, 1. 

The error spectrum is defined by A, = Uk- W,. Lack of correlation, w k  = 0, of the 
comparison fields corresponds to Ak = U,, what we refer to as 'complete ignorance'. 
Perfect correlation, W, = uk, corresponds to Ak = 0 ,  what we refer to as 'complete 
knowledge '. Perfect, anticorrelation, 1% = - CL, would also cwrrespond to complcte 
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knowledge, but is not a particularly interesting situation. The Markovian closure 
equation for A, is obtained from (2.2) and is 

A couple of simple observations from (2.4) are immediate. If there is no initial 
uncertainty and R, = F, for all k, then wk = Uk, Ak = 0 ,  and such complete know- 
ledge persists. If initial uncertainty is total, then Ak = uk, wk = 0, and complete 
ignorance persists. When vk > 0,  dissipation provides for decay of A, along with decay 
of U, or wk. If external forces are uncorrelated between realizations then Rk = 0, and 
Fk is a source for A,. If the same external force is applied to each realization then 
R, = Fk, and A, is unaffected. 

Beyond these simple observations very little can apparently be said. If we consider 
the spectrally truncated system (i.e. only a finite number of modes) and set Vk = I$ = 0 
then we are dealing with closed conservative systems. In that case, we might expect 
from a general statistical-mechanical or information-theoretical principle that 
‘uncertainty ’ cannot decrease. A question is how to interpret this principle. From 
(2.4) we can easily find circumstances where A, decreases a t  some k. Neither is there 
any apparent wavenumber-weighted sum over A, which does not decrease. This 
paradox, to reconcile predictability theory as given by (2.4) with the second law of 
thermodynamics, motivates the second part of our paper. 

3. Entropy and the predictability H-theorem 
The close relation between statistical theories of turbulence as developed by 

Kraichnan (1959), Edwards (1964), Herring (1965) and others, and methods of dis- 
equilibrium statistical mechanics as described e.g. by Prigogine ( 1962) has encouraged 
various authors, including Edwards & McComb (1969), Cook (1974), Montgomery 
(1976) and Carnevale et al. (1981) to consider the role of macroscale entropy which, 
for d-dimensional homogeneous isotropic turbulence, has the expression 

S = &(d- I )  Cln U,. 
k 

In  more general cases where flow may be correlated with external fields, such as quasi- 
geostrophic turbulence above irregular topography, or where internal correlations as 
among vertical layers in a layer model of quasi-geostrophic turbulence are to  be con- 
sidered, Carnevale et al. (1981) have demonstrated an important extension of (3.1). 
Consider an overall second moment correlation matrix Y among all of the wave-vector 
coefficients of all of the fields present. The appropriate entropy then is 

S = i l n d e t Y .  (3.2) 

Carnevale et al. (1981) show that S defined by (3.2) is related to our lack of information 
about the ensemble, and that, assuming Gaussian initial conditions, S cannot decrease 
in time for conservative systems. Furthermore, they demonstrate very generally that 
second-order Markovian closure implies that (3 .2)  satisfies a Roltzmann-like H- 
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theorem. That is d S / d t  = 0 for the canonical equilibrium ensemble, but otherwise 
dS/dt > 0. This result is non-trivial, especially since the underlying Eulerian dynamical 
equations are non-Hamiltonian. Corresponding H-theorems for case of weakly 
inter-acting waves as discussed by Hasselmann (1 966) follow more directly from the 
Hamiltonian dynamical basis for such systems. 

The role of entropy in the description of macroscale fluid motions has tended to be 
viewed as esoteric. Entropy as given by (3 .2 )  does not have the same intuitive reality 
as kinetic energy, say. Yet it is intriguing that calculation in ocean basins, on a 
rotating sphere, in two-layer fluids and above arbitrary topography, which are based 
upon maximizing S subject only to  overall constraints such as total energy, total 
enstrophy or angular momentum, produce some strikingly realistic flows, as in Salmon, 
Holloway & Hendershott (1976) or Frederiksen & Sawford (1980). 

When we turn to  predictability, the role of entropy becomes natural and indeed, 
we feel, essential. I n  the case of weather predictability, we are not so concerned about 
the future kinetic energy of the atmosphere nor even the kinetic energy of the ‘error 
wind’. Rather, we seek a quantitative measure of the maximum information that we 
may hope to provide about future states of the atmosphere, given our current informa- 
tion about the atmosphere. At once ( 3 . 2 )  will provide such a measure and also resolve 
the second-law paradox to which we alluded above. 

When we apply prescription (3 .2 )  to the problem a t  hand we find 

S =  &(d-I)C,ln(U;-Wi), ( 3 . 3 a )  
k 

up to uninteresting additive constants (for details see Carnevale et al. 1981; Carnevale 
1979). Or we could rewrite ( 3 . 3 a )  in terms of A, and a new variable ck = u k + w k  as 

s = ~ ( d - l ) ~ ( ( I n A k + l n c T k ) .  
k 

( 3 . 3 b )  

Since in the state of complete ignorance (wk = 0) the error field A, is not a maximum 
but rather takes the intermediate value uk, it is quite natural that  S depends rather 
on UE - W i ,  which takes on its maximum value U i  in the state of complete ignorance. 
The greater our ignorance, the larger is UE- W i  and hence the larger is S. 

Since the Leith & Kraichnan (1972) equations ( 2 . 2 )  with vk = Fk = 0 are second- 
order Markovian equations they must, according to  Carnevale et al. (1981), imply that 
S increases monotonically with U’ and w k  approaching canonical equilibrium. The 
canonical-equilibrium spectra are 

up = (a+bk2)-1, w;q = 0, ( 3 . 4 a ,  b)  

where b = 0 for d > 2 (cf. Salmon et al. 1976; Carnevale et al. 1981). S increases mono- 
tonically toward its equilibrium value, which corresponds to  the state of complete 
ignorance Ak = uk. 

To include the effects of external forcing and generalized dissipation, we derive the 
evolution equation for S directly from (2.2). To write the equation for 

( 3 . 5 )  
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which derives from ( 2 . 2 ) ,  we first note that k-2sin2a is symmetric under permutation 
of k, p and q, and we recall that ok, is also symmetric. Then by changes in dummy- 
summation variables and some tedious algebraic manipulation we obtain 

By the Schwartz inequality 0 6 Ak and 0 6 a,. Thus for vk = 0, dSldt is manifestly 
non-negative. Furthermore, assuming U i  - WE > 0 initially, so that X is always well- 
defined, i t  can be shown in the case of vk = Fk = 0 that the only analytic solution to 
d X / d t  = 0 is the canonical equilibrium result (3.4).  

By the Schwartz inequality the external forcing term in (3.6) is always non- 
negative. It vanishes only when the systems and the forcing realizations are perfectly 
correlated, but is otherwise positive. This is what we would intuitively expect to be 
the effect of random forcing on uncertainty. 

If vk > 0 for all k then the dissipative term tends to decrease 8. This is also as one 
would intuitively expect, because viscosity drives the systems toward the perfectly 
predictable state of zero motion. A negative value of vk on the other hand contributes 
to the increase of 8. This too is intuitive since a negative vk acts as a random force 

An interesting case is that  in which the last two terms in (3.6) cancel each other 
exactly at all times. Then dS /d t  0, and the system is again driven to  a state with 
spectra (3.4).  I n  particular, this occurs in the exact stationary, forced, viscous state 
examined by Thom‘pson (1972) for which 2vk = &/Utq, W, = 0 and Rk = 0. 

A question of great concern in atmospheric predictability is the effect of a differen- 
tial rotation rate. There are theoretical arguments and numerical simulation evidence 
to suggest that  predictability is enhanced for flow on a /?-plane (Basdevant et al. 1981 ; 
Carnevale 1981; Holloway 1981). The Markovian closure equations (2.2) ford = 2 are 
valid for anisotropic as well as isotropic flow (simply replace wavenumber variables 
with wave vectors). The effect of differential rotation enters these equations only 
through modifications of the triad relaxation time Ok, - in general, the larger /? is 
the smaller ohpq is for a given spectrum (cf. Holloway & Hendershott 1977). Thus the 
tendency for X to increase as given by (3.6) is correspondingly reduced, suggesting 
enhanced predictability on the /?-plane. 

with power 2lVkl u k .  

4. Discussion 
T e  have introduced a measure of flow-predictability that satisfies certain com- 

pelling principIes and intuitions. S defined by (3.3) for inviscid unforced systems must 
increase monotonically, representing a monotonic tendency to complete ignorance in 
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FIGURE 1.  The evolution of S (3.3) for inviscid unforced simulation with differential rotation 
p = 0, ,L? = 0-5,8, and /3 = Po. The units of time are given in terms of a ‘turnover time’ n/c, 
with g the r.m.s. vorticity. 

accord with the second law of thermodynamics. The tendencies of viscosity to  
decrease S and random forcing to increase S are in accord with intuition. The effect of 
differential rotation in slowing down the decay of predictability is in agreement with 
current studies on the subject. These properties of S cannot be matched by any 
spectrally weighted sum over the error field Ak. 

As a practical matter we believe S can be a useful measure of predictability in com- 
paring a flow with prediction. Although in comparing such a pair we only have a single 
realization estimate of L i  and wk, there is evidence to suggest S will still behave much 
like the ensemble predictions. For example, Carnevale (1981) has demonstrated that 
in simulation of two-dimensional flow initially far from equilibrium the behaviour of 
the entropy (3.1) agrees very closely with the predictions of closure and statistical 
mechanics. 

We have done some preliminary work in which we simulate a pair of unforced, 
inviscid realizations and compute S as the spectra tend to  equilibrium. The behaviour 
of the entropy for three experiments (P = 0, /3 = 0.5,4,, and p = Po) is shown in figure 1 
for a simulation with resolution ( 64)2. Here the effect of /3 relative to advective effects 
is measured by /3,, = 12/u, where 5 is the r.m.s. vorticity and u is the r.m.s. velocity 
(Rhines 1975). For /3 < Po, effects of/3 are slight. For /3 B Po, effects of /3 are dominant. 
We show the moderate cases /3 = 0.5/3,, and /3 = Po. The delay in the increase of 
uncertainty for p = 0.5/3, and Po compared to /3 = 0 is qualitatively as suggested 
in $3. 

Of course, for single realizations noise appears in the value of S. However, both the 
near-equilibrium mean value of S and the size of the noise band can be accurately 
predicted from statistical mechanics, as shown by Carnevale ( 1  981). 
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